Tuesday, December 27, 2016

NASA Webb Telescope Structure is Sound After Vibration Testing Detects Anomaly



Ken Kremer posted: " NASA GODDARD SPACE FLIGHT CENTER, MD - The James Webb Space Telescope (JWST) is now deemed "sound" and apparently unscathed, engineers have concluded, based on results from a new batch of intensive inspections of the observatory's structure, "

New post on Universe Today

NASA Webb Telescope Structure is Sound After Vibration Testing Detects Anomaly

by Ken Kremer

The 18-segment gold coated primary mirror of NASA's James Webb Space Telescope is raised into vertical alignment in the largest clean room at the agency's Goddard Space Flight Center in Greenbelt, Maryland, on Nov. 2, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

NASA GODDARD SPACE FLIGHT CENTER, MD - The James Webb Space Telescope (JWST) is now deemed "sound" and apparently unscathed, engineers have concluded, based on results from a new batch of intensive inspections of the observatory's structure, after concerns were raised in early December when technicians initially detected "anomalous readings" during a preplanned series of vibration tests, NASA announced Dec. 23.

After conducting both "visual and ultrasonic examinations" at NASA's Goddard Space Flight Center in Maryland, engineers have found it to be safe at this point with "no visible signs of damage."

But because so much is on the line with NASA's $8.8 Billion groundbreaking Webb telescope mission that will peer back to nearly the dawn of time, engineers are still investigating the "root cause" of the "vibration anomaly" first detected amidst shake testing on Dec. 3.

"The team is making good progress at identifying the root cause of the vibration anomaly," NASA explained in a Dec 23 statement, much to everyone's relief. "They have successfully conducted two low level vibrations of the telescope."

"All visual and ultrasonic examinations of the structure continue to show it to be sound."

Starting late November, technicians began a defined series of environmental tests including vibration and acoustics tests to make sure that the telescopes huge optical structure was fit for blastoff and could safely withstand the powerful shaking encountered during a rocket launch and the especially harsh rigors of the space environment.

NASA's James Webb Space Telescope placed inside a "clean tent" in Nov. 2016 to protect it from dust and dirt as engineers at NASA's Goddard Space Flight Center in Greenbelt, Maryland transport it out of the relatively dust-free cleanroom and into a shirtsleeve environment to conduct vibration and acoustics tests to confirm it is fit for launch in 2018. Credit: NASA/Chris Gunn

The Webb telescope will launch on an Ariane V booster from the Guiana Space Center in Kourou, French Guiana in 2018.

"The James Webb Space Telescope is undergoing testing to make sure the spacecraft withstands the harsh conditions of launch, and to find and remedy all possible concerns before it is launched from French Guiana in 2018."

However they soon discovered unexpected "anomalous readings" during a shake test of the telescope on Dec. 3, as the agency initially announced in a status update on the JWST accelerometers attached to the telescope detected during a particular test.

The anomalous readings were found during one of the vibration tests in progress on the shaker table, via accelerometers attached to the observatories optical structure known as OTIS.

"During the vibration testing on December 3, at Goddard Space Flight Center in Greenbelt, Maryland, accelerometers attached to the telescope detected anomalous readings during a particular test," the team elaborated.

So the team quickly conducted further "low level vibration" tests and inspections to more fully understand the nature of the anomaly, as well as scrutinize the accelerometer data for clues.

"Further tests to identify the source of the anomaly are underway. The engineering team investigating the vibe anomaly has made numerous detailed visual inspections of the Webb telescope and has found no visible signs of damage."

"They are continuing their analysis of accelerometer data to better determine the source of the anomaly."

The team is measuring and recording the responses of the structure to the fresh low level vibration tests and will compare these new data to results obtained prior to detection of the anomaly.

Work continues over the holidays to ensure Webb is safe and sound and can meet its 2018 launch target. After thoroughly reviewing all the data the team hope to start the planned vibration and acoustic testing in the new year.

"Currently, the team is continuing their analyses with the goal of having a review of their findings, conclusions and plans for resuming vibration testing in January."

Webb's massive optical structure being tested is known as OTIS or Optical Telescope element and Integrated Science. It includes the fully assembled 18-segment gold coated primary mirror and the science instrument module housing the four science instruments

OTIS is a combination of the OTE (Optical Telescope Assembly) and the ISIM (Integrated Science Instrument Module) together.

"OTIS is essentially the entire optical train of the observatory!" said John Durning, Webb Telescope Deputy Project Manager, in an earlier exclusive interview with Universe Today at NASA's Goddard Space Flight Center.

"It's the critical photon path for the system."

The components were fully integrated this past summer at Goddard.

The combined OTIS entity of mirrors, science module and backplane truss weighs 8786 lbs (3940 kg) and measures 28'3" (8.6m) x 8"5" (2.6 m) x 7"10" (2.4 m).

The environmental testing is being done at Goddard before shipping the huge structure to NASA's Johnson Space Center in February 2017 for further ultra low temperature testing in the cryovac thermal vacuum chamber.

The 6.5 meter diameter 'golden' primary mirror is comprised of 18 hexagonal segments - looking honeycomb-like in appearance.

And it's just mesmerizing to gaze at - as I had the opportunity to do on a few occasions at Goddard this past year - standing vertically in November and seated horizontally in May.

Each of the 18 hexagonal-shaped primary mirror segments measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). They are made of beryllium, gold coated and about the size of a coffee table.

All 18 gold coated primary mirrors of NASA's James Webb Space Telescope are seen fully unveiled after removal of protective covers installed onto the backplane structure, as technicians work inside the massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming. It will also study the history of our universe and the formation of our solar system as well as other solar systems and exoplanets, some of which may be capable of supporting life on planets similar to Earth.

Watch this space for my ongoing reports on JWST mirrors, science, construction and testing.

Stay tuned here for Ken's continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Ken Kremer | December 27, 2016 at 5:35 pm | Tags: John Mather | URL: http://wp.me/p1CHIY-yhk

Unsubscribe to no longer receive posts from Universe Today.
Change your email settings at Manage Subscriptions.

Trouble clicking? Copy and paste this URL into your browser:
http://www.universetoday.com/131770/nasa-webb-telescope-structure-is-sound-after-vibration-testing-detects-anomaly/



No comments:

Post a Comment