Monday, December 19, 2016

Program Manager, ENG/IIP, AD-0340-04 (Closes: 01/03/2017)


Program Manager, ENG/IIP, AD-0340-04 (Closes: 01/03/2017)


Available Formats:
HTML: https://www.usajobs.gov/GetJob/ViewDetails/460156400

Document Number: iip20170003


This is a NSF Vacancies item.


This email was sent to mantiskhiralla@gmail.com using GovDelivery, on behalf of: National Science Foundation Update · 4201 Wilson Boulevard · Arlington, VA 22230 · 703-292-5111 Powered by GovDelivery

Astronomer (Program Director), MPS/AST, AD-1330-04 (Closes: 1/9/2017)


Astronomer (Program Director), MPS/AST, AD-1330-04 (Closes: 1/9/2017)


Available Formats:
HTML: https://www.usajobs.gov/GetJob/ViewDetails/459760900

Document Number: ast20170010


This is a NSF Vacancies item.


This email was sent to mantiskhiralla@gmail.com using GovDelivery, on behalf of: National Science Foundation Update · 4201 Wilson Boulevard · Arlington, VA 22230 · 703-292-5111 Powered by GovDelivery

Social Scientist, Science of Science & Innovation Policy (SciSIP) Program, (Program Director), AD-0101-04 (Closes: 01/04/2017)


Social Scientist, Science of Science & Innovation Policy (SciSIP) Program, (Program Director), AD-0101-04 (Closes: 01/04/2017)


Available Formats:
HTML: https://www.usajobs.gov/GetJob/ViewDetails/458468800

Document Number: sbe20170001


This is a NSF Vacancies item.


This email was sent to mantiskhiralla@gmail.com using GovDelivery, on behalf of: National Science Foundation Update · 4201 Wilson Boulevard · Arlington, VA 22230 · 703-292-5111 Powered by GovDelivery

JPL News - Day in Review


 

DAY IN REVIEW
NASA JPL latest news release
New Technology Could Help Track Firefighters for Safety

In 1999, six career firefighters lost their lives responding to a five-alarm fire. They were part of a group of 73 dispatched to a smoke-filled warehouse in Worcester, Massachusetts. Lost inside the building's tight corners, they were unable to find an exit before running out of oxygen.

Avoiding a tragedy like that has been a technical challenge for decades. In the outdoors, firefighters can use GPS to track one another, and radios to stay in communication. But when they move into a steel and concrete building, these technologies suddenly become unreliable.

A research team at NASA's Jet Propulsion Laboratory in Pasadena, California, has developed a tracking system that could be a game-changer for firefighter safety. The team has been demonstrating the system, called POINTER (Precision Outdoor and Indoor Navigation and Tracking for Emergency Responders), for national and regional leaders in the first-responder community. The tracking technology could also benefit search-and-rescue teams in industrial or military contexts.

In August, POINTER was successfully demonstrated for top leadership at the Department of Homeland Security (DHS) Science and Technology Directorate, which has funded its development.

"To this day, the ability to track and locate first responders is a number one priority for disaster agencies across the country," said Greg Price, DHS First Responder Technologies Division director. "It's truly a Holy Grail capability that doesn't exist today. If the POINTER project continues along its current path of success, first responders will be safer in the future." Price observed the demo, along with DHS Under Secretary for Science and Technology Reginald Brothers and Deputy Under Secretary Robert Griffin. In September, representatives from fire departments across the U.S. visited JPL for a demonstration of POINTER. The tracking challenge was top of mind for Andrew Wordin, a battalion chief with the Los Angeles Fire Department: just weeks before, a firefighter became lost in a building after a roof gave way under him.

"They immediately declared a mayday," Wordin said. "As soon as that happens, everything stops. All radio traffic stops. All incident management stops."

Everyone's job becomes finding that lost firefighter and ensuring his safety. Wordin called the POINTER demo "very exciting," saying it showed promise for addressing the tracking problem inside of buildings.

The science of waves and fields

POINTER is both a technological and a mathematical breakthrough. JPL's Darmindra Arumugam solved a problem researchers had been looking at since the 1970s.

Most of that research has focused on radio waves, which have the advantage of propagating energy over long distances. That's made them ideal for communications and sensory technologies like radar. But they're also notoriously unpredictable indoors: they ricochet off walls and won't penetrate far underground. This is why you might lose your phone signal when you enter a steel-reinforced building or walk down to a basement.

Instead, Arumugam started looking at electromagnetic fields -- quasistatic fields, to be exact. These fields have been largely overlooked by researchers because they have short ranges. They're limited to just a few hundred yards, or meters, but they don't behave like waves. They can get around walls, offering increased non-line-of-sight capabilities.

The fields can also be tweaked to different sizes and wavelengths. Whereas waves represent energy in constant motion over time, fields can be stationary, or can change so slowly that they appear stationary (known as quasi-stationary or quasi-static). They can even be used to sense the different orientations of devices.

That last part is important. A tracking device emitting a quasi-static field would tell a receiver where it was in space, plus which way it was facing. It could tell a team commander whether a firefighter is crawling along the ground or is stationary, facing down on the floor -- suggesting that person may have stopped moving.

All of this involves complicated mathematics. Arumugam developed the theory, technique and algorithms that can analyze both the electrical and the magnetic components of quasistatic fields. These algorithms are the key to being able to interpret the quasistatic fields and their signaling.

A pocket-sized lifesaver

The technology is now being developed further so that it can be miniaturized and prepared for commercialization. Besides first responders, the need for this technology spans industrial, military and space applications.

Arumugam and his team put together a field transmitter that fits on a backpack, and they've shown it can be shrunk down to a device that weighs 0.4 ounces (11.7 grams). Over the next few years, JPL will be working to shrink POINTER even further, until a transmitter is small enough to fit into a pocket or on a belt buckle.

Arumugam said a device of this type could be a lifesaver for future search-and-rescue teams, but has wide potential application beyond that.

"POINTER could be used in space robotics," he said. "It could be used for tracking robots in underground tunnels, caves or under ice. They need to be able to navigate themselves, and we don't have sensors today that would be able to track them. For us, this is a great opportunity to develop a technology for NASA and non-NASA uses."

Ed Chow, manager of JPL's Civil Program Office and POINTER program manager, said a cellphone-sized tracker would integrate well with another first responder technology called AUDREY. This artificial intelligence system would distribute real-time data across a team of first responders, but distributing relevant information depends on knowing each member's exact location in the field.

"AUDREY is trying to provide suggested directions for firefighters lost in smoke," Chow said. "But without knowing each member's exact position and orientation, you can't make those kinds of suggestions."

 


This message was sent to mantiskhiralla@gmail.com from:

NASA Jet Propulsion Laboratory | jplnewsroom@jpl.nasa.gov | NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109


Spectrum of Antimatter Observed for First Time



Matt Williams posted: "Ever since the existence of antimatter was proposed in the early 20th century, scientists have sought to understand how relates to normal matter, and why there is an apparent imbalance between the two in the Universe. To do this, particle physics research"

New post on Universe Today

Spectrum of Antimatter Observed for First Time

by Matt Williams

Ever since the existence of antimatter was proposed in the early 20th century, scientists have sought to understand how relates to normal matter, and why there is an apparent imbalance between the two in the Universe. To do this, particle physics research in the past few decades has focused on the anti-particle of the most elementary and abundant atom in the Universe - the antihydrogen particle.

Until recently, this has been very difficult, as scientists have been able to produce antihydrogen, but unable to study it for long before it annihilated. But according to recent a study that was published in Nature, a team using the ALPHA experiment was able to obtain the first spectral information on antihydrogen. This achievement, which was 20 years in the making, could open up an entirely new era of research into antimatter.

Measuring how elements absorb or emit light - i.e. spectroscopy - is a major aspect of physics, chemistry and astronomy. Not only does it allow scientists to characterize atoms and molecules, it allows astrophysicists to determine the composition of distant stars by analyzing the spectrum of the light they emit.

Measuring the antihydrogen spectrum with high-precision offers an extraordinary new tool to test whether matter behaves differently from antimatter and thus to further test the robustness of the Standard Model (mage: Maximilien Brice/CERN)

The ALPHA experiment probes whether matter behaves differently from antimatter by measuring the antihydrogen spectrum with high-precision, further testing the robustness of the Standard Model. Credit: Maximilien Brice/CERN

In the past, many studies have been conducted into the spectrum of hydrogen, which constitutes roughly 75% of all baryonic mass in the Universe. These have played a vital role in our understanding of matter, energy, and the evolution of multiple scientific disciplines. But until recently, studying the spectrum of its anti-particle has been incredibly difficult.

For starters, it requires that the particles that constitute antihydrogen - antiprotons and positrons (anti-electrons) - be captured and cooled so that they may come together. In addition, it is then necessary to maintain these particles long enough to observe their behavior, before they inevitable make contact with normal matter and annihilate.

Luckily, technology has progressed in the past few decades to the point where research into antimatter is now possible, thus affording scientists the opportunity to deduce whether the physics behind antimatter are consistent with the Standard Model or go beyond it. As the CERN research team - which was led by Dr. Ahmadi of the Department of Physics at the University of Liverpool - indicated in their study:

"The Standard Model predicts that there should have been equal amounts of matter and antimatter in the primordial Universe after the Big Bang, but today's Universe is observed to consist almost entirely of ordinary matter. This motivates physicists to carefully study antimatter, to see if there is a small asymmetry in the laws of physics that govern the two types of matter."

ALPHA uses a magnetic trap to hold neutral atoms of anthydrogen and then conduct spectrographic analyis. Credit: CERN

ALPHA uses a magnetic trap to hold neutral atoms of antihydrogen and then subjecting them to spectrographic analysis. Credit: CERN

Beginning in 1996, this research was conducted using the AnTiHydrogEN Apparatus (ATHENA) experiment, a part of the CERN Antiproton Decelerator facility. This experiment was responsible for capturing antiprotons and positrons, then cooling them to the point where they can combine to form anithydrogen. Since 2005, this task has become the responsibility of ATHENA's successor, the ALPHA experiment.

Using updated instruments, ALPHA captures atoms of neutral antihydrogen and holds them for a longer period before they inevitably annihilate  During this time, research teams conduct spectrographic analysis using ALPHA's ultraviolet laser to see if the atoms obey the same laws as hydrogen atoms. As Jeffrey Hangst, the spokesperson of the ALPHA collaboration, explained in a CERN update:

"Using a laser to observe a transition in antihydrogen and comparing it to hydrogen to see if they obey the same laws of physics has always been a key goal of antimatter research... Moving and trapping antiprotons or positrons is easy because they are charged particles. But when you combine the two you get neutral antihydrogen, which is far more difficult to trap, so we have designed a very special magnetic trap that relies on the fact that antihydrogen is a little bit magnetic."

In so doing, the research team was able to measure the frequency of light needed to cause a positron to transition from its lowest energy level to the next. What they found was that (within experimental limits) there was no difference between the antihydrogen spectral data and that of hydrogen. These results are an experimental first, as they are the first spectral observations ever made of an antihydrogen atom.

Besides allowing for comparisons between matter and antimatter for the first time, these results show that antimatter's behavior - vis a vis its spectrographic characteristics - are consistent with the Standard Model. Specifically, they are consistent with what is known as Charge-Parity-Time (CPT) symmetry.

This symmetry theory, which is fundamental to established physics, predicts that energy levels in matter and antimatter would be the same. As the team explained in their study:

"We have performed the first laser-spectroscopic measurement on an atom of antimatter. This has long been a sought-after achievement in low-energy antimatter physics. It marks a turning point from proof-of-principle experiments to serious metrology and precision CPT comparisons using the optical spectrum of an anti-atom. The current result... demonstrate that tests of fundamental symmetries with antimatter at the AD are maturing rapidly."

In other words, the confirmation that matter and antimatter have similar spectral characteristics is yet another indication that the Standard Model holds up - just as the discovery of the Higgs Boson in 2012 did. It also demonstrated the effectiveness of the ALPHA experiment at trapping antimatter particles, which will have benefits other antihydrogen experiments.

Naturally, the CERN researchers were very excited by this find, and it is expected to have drastic implications. Beyond offering a new means of testing the Standard Model, it is also expected to go a long way towards helping scientists to understand why there is a matter-antimatter imbalance in the Universe. Yet another crucial step in discovering exactly how the Universe as we know it came to be.

Further Reading: CERN

Comment    See all comments

Unsubscribe to no longer receive posts from Universe Today.
Change your email settings at Manage Subscriptions.

Trouble clicking? Copy and paste this URL into your browser:
http://www.universetoday.com/132496/spectrum-antimatter-observed-first-time/



Colon Cancer: Know the Signs


If caught early, colon cancer is highly curable. We share key information on things that can raise your odds of getting it, possible symptoms, and when to be screened.
Trouble viewing this email? View as a Webpage Monday, December 19, 2016
Special
Missing Images! Slideshow
Colon Cancer: Know the Signs
If caught early, colon cancer is highly curable. We share key information on things that can raise your odds of getting it, possible symptoms, and when to be screened.
Quiz
Are You Taking Antibiotics for the Right Reasons?
Slideshow
These Exercises Are Really Worth Your Time
Slideshow
Had an IBD Flare? These Foods May Help You Recover
Slideshow
Reasons for Fatigue and Ways to Manage Them
Slideshow
What Shingles Looks Like, and Who's at Risk
ADVERTISEMENT
 
ADVERTISEMENT
 
Missing image   Missing image   Missing image   Missing image   Missing image
 
WebMD.com   |  Mobile Apps   |   Newsletters
 
You are receiving this message because you registered with WebMD as mantiskhiralla@gmail.com.
If you did not register for WebMD please contact our Customer Care Team
WebMD Privacy Policy   |  Unsubscribe  
 
© 2016 WebMD, LLC. All rights reserved.
WebMD Office of Privacy | 1201 Peachtree Street, NE | Atlanta, GA 30361