The hunt for exoplanet has revealed some very interesting things about our Universe. In addition to the many gas giants and "Super-Jupiters" discovered by mission like Kepler, there have also been the many exoplanet candidate that comparable in size and structure to Earth. But while these bodies may be terrestrial (i.e. composed of minerals and rocky material) this does not mean that they are "Earth-like".
For example, what kind of minerals go into a rocky planet? And what could these particular compositions mean for the planet's geological activity, which is intrinsic to planetary evolution? According to new study produced by a team of astronomers and geophysicists, the composition of an exoplanet depends on the chemical composition of its star - which can have serious implications for its habitability.
The findings of this study were presented at the 229th Meeting of the American Astronomical Society (AAS), which will be taking place from Jan. 3rd to Jan. 7th. During an afternoon presentation - titled "Between a Rock and a Hard Place: Can Garnet Planets Be Habitable?" - Johanna Teske (an astronomer from the Carnegie Institute of Science) showed how different types of stars can produce vastly different types of planets.
The Apache Point Observatory Galactic Evolution Experiment (APOGEE), which collects spectrographic information on distant stars. Credit: astronomy.as.virginia.edu
Using the Apache Point Observatory Galactic Evolution Experiment (APOGEE), which is part of the Sloan Digital Sky Survey (SDSS) Telescope at Apache Point Observatory, they examined spectrographic information obtained from 90 star systems - which were also observed by the Kepler Mission. These systems are of particular interest to exoplanet hunters because they have been shown to contain rocky planets.
As Teske explained during the course of the presentation, this information could help scientists to place further constraints on what it takes for a planet to be habitable. "[O]ur study combines new observations of stars with new models of planetary interiors," she said. "We want to better understand the diversity of small, rocky exoplanet composition and structure — how likely are they to have plate tectonics or magnetic fields?"
Focusing on two star systems in particular - Kepler 102 and Kepler 407 - Teske demonstrated how the composition of a planet has a great deal to do with the composition of its star. Whereas Kepler 102 has five known planets, Kepler 407, has two different planets - one gaseous and the other terrestrial. And while Kepler 102 is quite similar to our Sun (slightly less luminous), Kepler 407 has close to the same mass (but a lot more silicon).
In order to understand what consequences these differences could have for planetary formation, the SDSS team turned to a team of geophysicists. Led by Cayman Unterborn from Arizona State University, this team ran computer models to see what kinds of planets each system would have. As Unterborn explained:
"We took the star compositions found by APOGEE and modeled how the elements condensed into planets in our models. We found that the planet around Kepler 407, which we called 'Janet," would likely be rich in the mineral garnet. The planet around Kepler 102, which we called 'Olive,' is probably rich in olivine, like Earth."
Artist rendition of interior compositions of planets around the stars Kepler 102 and Kepler 407. Credit: Robin Dienel/Carnegie DTM
This difference would have considerable impact on planetary tectonics. For one, garnet is lot more rigid than olivine, which would mean "Janet" would experience less in the way of long-term plate tectonics. This in turn would mean that processes that are believed to be essential to life on Earth - like volcanic activity, atmospheric recycling, and mineral exchanges between the crust and mantle - would be less common.
This raises additional questions about the habitability of "Earth-like" planets in other star systems. In addition to being rocky and having strong magnetic fields and viable atmospheres, it seems that exoplanets also need to have the right mix of minerals in order to support life - life as we know it, at any rate. What's more, this kind of research also helps us to understand how life came to emerge on Earth in the first place.
Looking forward, the research team hopes to extend their study to include all the 200,000 stars surveyed by APOGEE to see which could host terrestrial planets. This will allow astronomers to determine the mineral composition of more rocky worlds, thus helping them to determine which rocky exoplanets are "Earth-like", and which are just "Earth-sized".
Further Reading: SDSS
No comments:
Post a Comment