The two halves of the James Webb Space Telescope are now in the same location and ready to take the next step on JWST's journey. On February 2nd, Webb's Optical Telescope and Integrated Science instrument module (OTIS) arrived at Northrop Grumman Aerospace Systems in Redondo Beach, California. The integrated spacecraft, consisting of the spacecraft bus and sunshield, were already there, waiting for OTIS so they could join together and become a complete spacecraft.
"The team will begin the final stages of integration of the world's largest space telescope." - Scott Willoughby, Northrop Grumman's Program Manage for the JWST.
"It's exciting to have both halves of the Webb observatory – OTIS and the integrated spacecraft element – here at our campus," said Scott Willoughby, vice president and program manager for Webb at Northrop Grumman. "The team will begin the final stages of integration of the world's largest space telescope."
OTIS arrived from the Johnson Space Center in Houston, where it had successfully completed its cryogenic testing. To prepare for that journey, OTIS was placed inside a custom shipping container designed to protect the delicate and expensive Webb Telescope from any damage. That specially designed container is called the Space Telescope Transporter for Air, Road and Sea (STTARS).
STTARS is a massive container, measuring 4.6 meters (15 feet) wide, 5.2 meters (17 feet) tall, and 33.5 meters feet (110) long, and weighing approximately 75,000 kilograms (almost 165,000 pounds). It's much larger than the James Webb itself, but even then, the primary mirror wings and the secondary mirror tripod must be folded into flight configuration in order to fit.
The next step for the JWST is to join the spacecraft itself with OTIS. Once that happens, JWST will be complete and fully integrated. Then there'll be more tests called observatory-level testing. After that, another journey inside STTARS to Kouru, French Guiana, where the JWST will be launched in 2019.
"This is a major milestone." - Eric Smith, director of the James Webb Space Telescope Program at NASA.
"This is a major milestone," said Eric Smith, director of the James Webb Space Telescope Program at NASA. "The Webb observatory, which is the work of thousands of scientists and engineers across the globe, will be carefully tested to ensure it is ready to launch and enable scientists to seek the first luminous objects in the universe and search for signs of habitable planets."
You can't fault people, either NASA personnel or the rest of us, for getting excited about each development in the James Webb Space Telescope story. Every time the thing twitches or moves, our excitement re-spawns. It seems like everything that happens with the JWST is now a milestone in its long, uncertain journey. It's easy to see why.
The Space Telescope That Almost Wasn't
The James Webb ran into a lot of problems during its development. As can be expected for a ground-breaking, technology-pushing project like the Webb, it's expensive. In 2011, when the project was well underway, it was revealed that the Webb would cost $8.8 billion, much more than the initial budget of $1.6 billion. The House of Representatives cancelled the project, then restored it, though funding was capped at $8 billion.
That was the main hurdle facing the development of the JWST, but there were others, including timeline delays. The most recent timeline change moved the launch date from 2017 to Spring 2019. As of now, the James Webb is on schedule, and on target to meet its revised budget.
The First "Super Telescope"
The JWST is the first of the "Super Telescopes" to be in operation. Once it's in place at LaGrange Point 2 (L2), about 1.5 million km (930,000 miles) from Earth, it will begin observing, primarily in infrared. It will surpass both the Hubble Telescope and the Spitzer Telescope, and will "look back in time" to some of oldest stars and galaxies in the universe. It will also examine exoplanets and contribute to the search for life.
No comments:
Post a Comment