Monday, March 13, 2017

Exploring the Universe For Magnetic Fields

New post on Universe Today

Exploring the Universe For Magnetic Fields

by Matt Williams

In the past few decades, astronomers and geophysicists have benefited immensely from the study of planetary magnetic fields. Dedicated to mapping patterns of magnetism on other astronomical bodies, this field has grown thanks to missions ranging from the Voyager probes to the more recent Mars Atmosphere and Volatile EvolutioN (MAVEN) mission.

Looking ahead, it is clear that this field of study will play a vital role in the exploration of the Solar System and beyond. As Jared Espley of NASA's Goddard Space Flight Center outlined during a presentation at NASA's Planetary Science Vision 2050 Workshop, these goals include advancing human exploration of the cosmos and the search for extra-terrestrial life.

Consider the case of Earth and its "twin planet", Mars. Earth has a magnetic field that ranges in strength from 25 to 65 microteslas (0.25 to 0.65 gauss), which ensures that habitable conditions can exist on its surface. Mars, by contrast, once had a magnetic field, which allowed for the existence of a thicker atmosphere and liquid water on its surface.

Artist's rendering of a solar storm hitting Mars and stripping ions from the planet's upper atmosphere. Credits: NASA/GSFC

The process by which this occurred was mapped extensively by orbiters like MAVEN and the Mars Global Surveyor (MGS). According to data provided by these missions, scientists now know that roughly 4.2 billion years ago, Mars' magnetic field disappeared. Over the course of the next 500 million years, the planet's atmosphere was slowly stripped away, which caused its surface to become the cold, desiccated place we see today.

Because of this, being able to measure planetary magnetic fields could be a boon to astronomers and planetary researchers. As Jared Espley told Universe Today via email:

"Directly measuring magnetic fields at and near the worlds of the Solar System tells us a lot about how those worlds work. Broadly speaking, we can learn about their interior structure and composition and how the charged gases in their atmospheres move and behave. For example, we can probe whether places like Europa have subsurface oceans, what Jupiter's interior structure looks like, and whether Mars lost its atmosphere via solar wind erosion."

As a research assistant at Goddard's Solar System Exploration Division (SSED), Espley is well versed in the study of things like Mars' induced magnetosphere, the physics of space plasma, and the developed of mangetometers. And as he explained during the course of his presentation at the 2050 Workshop, their are several applications for this field of study going forward. They include:

Artist's impression of the interior of Mars. Credit: NASA/JPL

Subsurface Sounding:

When it comes to the exploration of planets like Mars, magnetometry be useful in helping scientists determine its subsurface structure and composition. As it stands, missions like the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) lander - which is scheduled to launch in 2018 - are intended to provide information on its seismology, temperature, and history of formation.

By using networks of electromagnetic sensors such as magnetometers, such missions could be augmented by allowing for more in-depth studies of a planet's interior structure. In addition, they could be used to located things like aquifers, which would help in the search for Martian life and identify resources needed for human exploration, and even colonization.

Similar missions could be mounted to Venus and Mercury, thus revealing how all the terrestrial planets in the Solar System were created, what they have in common, and what sets them apart.

Aerial Geomagnetic Surveys:

By placing magnetometers on aerial platforms such as gliders or balloons, detailed geophysical characterization of planetary surfaces could be conducted. This would allow future missions to explore of the geophysical history of planets with respect to events that altered the magnetization of the crust - i.e. volcanism, plate tectonics, impact cratering, and more.

Artist's concept of the Titan Aerial Daughter (TAD) quadcopter and its "Mothership" balloon. Credit: NASA/STMD

Such surveys are used on Earth routinely to characterize the materials in the near subsurface, or for the sake of mineral exploration. But on other planets and moons, they could help shed on light on some of the deeper mysteries, which include whether or not they could support life. This is especially the case on moons like Europa, Ganymede, Enceladus, and Titan.

Currently, there are proposals in place for the aerial exploration of Titan. These include concepts like the Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR), the Titan Aerial Daughtercraft (TAD), and the "Dragonfly". There's also the Mars Helicopter "Scout", a vehicle that would use two coaxial counter-rotating blades to explore Mars' atmosphere (and which is expected to launch as part of the Mars 2020 mission).

Planetary Magnetospheres:

Magnetometers could also be used to help resolve some enduring mysteries in the study of magnetospheres. For instance, planetary magnetospheres are highly dynamic, and it can be difficult to distinguish between phenomena that are time-dependent or  spatially-dependent - i.e. magnetic reconnection, escaping atmospheric plasma structures, and plasma waves.

By deploying multiple spacecraft of small groups of CubeSats equipped with magnetometers (and plasma spectrometers), it would be possible to more fully address how planetary magnetospheres work. Such missions have been conducted around Earth for the sake of measuring Earth's magnetic field, as part of geologic surveys, and to measure the interaction between solar wind and Earth's magnetosphere.

The magnetic field and electric currents in and around Earth generate complex forces that have immeasurable impact on every day life. Credit: ESA/ATG medialab

In addition, missions to other planets have been conducted that made use of magnetometers. A three-axis fluxgate magnetometer was part of the Mariner 2 and Mariner 10 missions (which explored Venus and Mercury), and the MESSENGER mission to Mercury. A dual technique magnetometer was also part of the Cassini-Huygens mission to explore Saturn. And the returns on these missions show how future missions could be of equal value.

Ice Giants:

Neptune and Uranus are known to have powerful and unique magnetospheres, possessing dipoles that are strongly tilted relative to their rotational axes. However, not much effort has been directed into studying them and determining why this is the case. As such, a Flagship mission that could explore and measure their fields using magnetometers would be of major scientific value.

Ocean Worlds:

The study of Europa, Enceladus, Titan, and other moons are likely to be a major undertaking in the coming decades. In fact, it was a major theme at the Planetary Science Vision 2050 Workshop, which featured presentations  from the Europa Lander Mission Concept Team and the Roadmaps to Ocean Worlds (ROW) team. These mission will be dedicated to finding extra-terrestrial life in our Solar System and learning more about its formation.

And as Espley indicated, magnetometry could play a key role in these missions. For starters, they would allow missions to measure the depth and location of the potentially-habitable subsurface oceans these moon's are known (or suspected) to have. In addition, such a mission to Ganymede could help characterize its magnetic field, which would be of immense scientific value since it is the only non-gas giant other than Earth known to have one.

A montage of some of the "ocean worlds" in our Solar System. From top to bottom, left to right, these include Europa, Enceladus, TItan and Ceres. Credit: NASA/JPL

While such missions are already being considered for Europa, Titan is also likely to become a research destination in the coming decades. Other "ocean worlds" - like Triton, Pluto, Ceres and Dione - are likely to follow before long as well. And as Espley explained, the benefits for exploration go well beyond the Solar System:

"The magnetometers that we use to measure magnetic fields in space are relatively robust, cheap, and reliable, especially given the wide variety of science questions we can address with them. Any Solar System mission that can accommodate a magnetometer should include one. Most of exoplanet research is currently focused on remote observing of these distant worlds whereas most of Solar System magnetometry is focused on measurements in the local environment. Nonetheless as we better understand how planets in our Solar System work this is vitally important for interpreting what we see in other solar systems."

Being able to study the magnetic fields of other planets directly is certainly a long way off. But long before we can mount missions to other system and examine them up close, the study of planetary magnetic fields could help us to determine which of the many exoplanets we have discovered in recent years could be habitable. If nothing else, it might cut down on the time we spend doing follow-up investigation (like searching for radio signals).

Further Reading: USRA

Matt Williams | March 13, 2017 at 10:27 pm | Tags: Featured | URL: http://wp.me/p1CHIY-yWm
Comment    See all comments

Trouble clicking? Copy and paste this URL into your browser: 

http://www.universetoday.com/134314/exploring-universe-magnetic-fields/


Celebrate Pi Day With NASA

Celebrate Pi Day Like a NASA Rocket Scientist
 

Celebrate Pi Day With NASA

NASA is giving space fans a reason to celebrate Pi Day, the March 14 holiday created in honor of the mathematical constant pi. For the fourth year in a row, the agency's Jet Propulsion Laboratory has created a Pi Day Challenge featuring math problems NASA scientists and engineers must solve to explore space. This year's illustrated problem set (also available as a free poster!) features Mars craters, a total solar eclipse, a close encounter with Saturn, and the search for habitable worlds. Follow the links below to participate in the challenge and discover more ways to celebrate Pi Day with NASA.

The answers to the Pi Day Challenge will be released on March 16.

 


NASA/JPL Edu | education@jpl.nasa.gov | NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109


U.S. National Library of Medicine NLM Technical Bulletin Update

03/13/2017 10:43 AM EDT

Editor's note added March 13, 2017: Beginning in October 2016, the OAB field on the MEDLINE display is no longer populated with information about abstracts available from the publisher.

This email was sent using GovDelivery, on behalf of: U.S. National Library of Medicine · 8600 Rockville Pike · Bethesda, MD 20894 Powered by GovDelivery

These Are the Germiest Things in Your House


BREAKING: Justice Department requests more time from a House panel to determine President Trump's wiretapping claims

Having trouble viewing this email? | View it in your browser

FB TW g+ Ins

  The Department of Justice late Monday asked a House panel for more time to support President Trump's claims that the Obama administration had tapped the telephones at the president's New York offices in advance of the November election. The House Intelligence Committee, which is investigating possible links between Trump associates and the Russian government, had imposed a Monday deadline to provide any supporting evidence. No such information had been transmitted by Monday evening.

FOR MORE ON THIS STORY, GO TO:
  USATODAY.COM  
 

Help | Advertise | Home Delivery | Privacy Policy - Your California Privacy Rights  
  © 2017 USA TODAY, a division of Gannett Satellite Information Network, LLC.
7950 Jones Branch Drive, McLean, VA 22108


March Launch Madness: Triple Headed Space Spectacular Starts Overnight with SpaceX March 14 – Watch Live

New post on Universe Today

March Launch Madness: Triple Headed Space Spectacular Starts Overnight with SpaceX March 14 – Watch Live

by Ken Kremer

SpaceX Falcon 9 rocket carrying EchoStar 23 telecomsat raised erect atop Launch Complex 39A at the Kennedy Space Center as seen from inside the pad on March 13, 2017 ahead of liftoff slated for 14 Mar 2017 at 1:34 a.m. Credit: Ken Kremer/Kenkremer.com

Indeed a trio of launches is planned in the next week as launch competitor and arch rival United Launch Alliance (ULA) plans a duo of nighttime blastoffs from their Delta and Atlas rocket families - following closely on the heels of the SpaceX Falcon 9 launching a commercial telecommunications satellite.

Of course it's all dependent on everything happening like clockwork!

And there is no guarantee of that given the unpredictable nature of the fast changing weather on the Florida Space Coast and unknown encounters with technical gremlins which have already plagued all 3 rockets this month.

Each liftoff has already been postponed by several days this month. And the rocket launch order has swapped positions.

At any rate, SpaceX is now the first on tap after midnight tonight on Tuesday, March 14.

The Delta IV and Atlas V will follow on March 17 and March 21 respectively - if all goes well.

The potential for a grand slam also exists at the very end of the month. But let's get through at least the first launch of Falcon first.

Liftoff of the SpaceX Falcon 9 carrying the EchoStar 23 telecommunications satellite is now slated for a post midnight spectacle next Tuesday, Mar. 14 from launch pad 39A on the Kennedy Space Center at the opening of the launch window at 1:34 a.m. EDT.

The two and a half hour launch window closes at 4:04 a.m. EDT.

You can watch the launch live on a SpaceX dedicated webcast starting about 20 minutes prior to the 1:34 a.m. liftoff time.

Following a successful static fire test last week of the first stage boosters engines, the SpaceX Falcon 9 was integrated with the EchoStar 23 direct to home TV satellite and rolled back out to pad 39A

The Falcon 9 rocket was raised erect into launch position by the time I visited the pad this afternoon, Monday March 13, to set up my cameras.

The weather outlook is not great at this moment, with rain and thick clouds smothering the coastline and central Florida.

The planned Mar. 14 launch comes barely three weeks after the Falcon's successful debut on Feb. 19 on the NASA contracted Dragon CRS-10 mission that delivered over 2.5 tons of cargo to the six person crew living and working aboard the International Space Station (ISS).

Raindrops keep falling on the lens, as inaugural SpaceX Falcon 9/Dragon disappears into the low hanging rain clouds at NASA's Kennedy Space Center after liftoff from pad 39A on Feb. 19, 2017. Dragon CRS-10 resupply mission is delivering over 5000 pounds of science and supplies to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

Launch Complex 39A was repurposed by SpaceX from launching Shuttles to Falcons. It had lain dormant for launches for nearly six years since Space Shuttle Atlantis launched on the final shuttle mission STS 135 in July 2011.

The second launch of the trio on tap is a United Launch Alliance Delta 4 rocket carrying the WGS-9 high speed military communications satellite for the U.S. Air Force.

Liftoff of the ULA Delta is slated for March 17 from Space Launch Complex-37 at 7: 44 p.m. EDT.

A United Launch Alliance (ULA) Delta IV rocket carrying the WGS-8 mission lifts off from Space Launch Complex-37 at 6:53 p.m EDT on Dec. 7, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

The S.S. John Glenn is scheduled to as the Orbital ATK Cygnus OA-7 spacecraft for NASA on a United Launch Alliance (ULA) Atlas V rocket launch no earlier than March 21 from Space launch Complex-41 (SLC-41) on Cape Canaveral Air Force Station, Florida.

Orbital ATK Cygnus OA-7 spacecraft named the SS John Glenn for Original 7 Mercury astronaut and Sen. John Glenn, undergoes processing inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida on March 9, 2017 for launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

Stay tuned here for Ken's continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 EchoStar 23 mission patch. Credit: SpaceX

………….

Learn more about SpaceX EchoStar 23 and CRS-10 launch to ISS, ULA SBIRS GEO 3 launch, EchoStar launch GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken's upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Mar 13-15: "SpaceX EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, EchoStar 19 comsat launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more," Kennedy Space Center Quality Inn, Titusville, FL, evenings

Ken Kremer | March 13, 2017 at 6:53 pm | Tags: Falcon 9 rocket | URL: http://wp.me/p1CHIY-yWr
Comment    See all comments

Trouble clicking? Copy and paste this URL into your browser: 

http://www.universetoday.com/134319/march-launch-madness-triple-headed-space-spectacular-starts-overnight-spacex-march-14-watch-live/